On the Modified Crystalline Stefan Problem with Singular Data
نویسندگان
چکیده
منابع مشابه
Solving The Stefan Problem with Kinetics
We introduce and discuss the Homotopy perturbation method, the Adomian decomposition method and the variational iteration method for solving the stefan problem with kinetics. Then, we give an example of the stefan problem with kinetics and solve it by these methods.
متن کاملSingular Limits for the Two-phase Stefan Problem
We prove strong convergence to singular limits for a linearized fully inhomogeneous Stefan problem subject to surface tension and kinetic undercooling effects. Different combinations of σ → σ0 and δ → δ0, where σ, σ0 ≥ 0 and δ, δ0 ≥ 0 denote surface tension and kinetic undercooling coefficients respectively, altogether lead to five different types of singular limits. Their strong convergence is...
متن کاملOn the Stefan Problem with Surface Tension
1. Introduction The classical Stefan problem is a model for phase transitions in solid-liquid systems and accounts for heat diiusion and exchange of latent heat in a homogeneous medium. The strong formulation of this model corresponds to a moving boundary problem involving a parabolic diiusion equation for each phase and a transmission condition prescribed at the interface separating the phases...
متن کاملTHE STEFAN PROBLEM WITH KINETIC FUNCTIONS AT THE FREE BOUNDARY
This paper considers a class of one-dimensional solidification problem in which kinetic undercooling is incorporated into the temperature condition at the interface. A model problem with nonlinear kinetic law is considered. The main result is an existence theorem. The mathematical effects of the kinetic term are discussed
متن کاملsolving the stefan problem with kinetics
we introduce and discuss the homotopy perturbation method, the adomian decomposition method and the variational iteration method for solving the stefan problem with kinetics. then, we give an example of the stefan problem with kinetics and solve it by these methods.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2002
ISSN: 0022-0396
DOI: 10.1006/jdeq.2001.4081